Sperner families of bounded VC-dimension

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erdös-Hajnal Conjecture for Graphs with Bounded VC-Dimension

The Vapnik-Chervonenkis dimension (in short, VC-dimension) of a graph is defined as the VCdimension of the set system induced by the neighborhoods of its vertices. We show that every n-vertex graph with bounded VC-dimension contains a clique or an independent set of size at least e(logn) . The dependence on the VC-dimension is hidden in the o(1) term. This improves the general lower bound, e √ ...

متن کامل

Bounded VC-Dimension Implies a Fractional Helly Theorem

We prove that every set system of bounded VC-dimension has a fractional Helly property. More precisely, if the dual shatter function of a set system F is bounded by o(m k), then F has fractional Helly number k. This means that for every > 0 there exists a > 0 such that if F 1 ; F 2 ; : : : ; F n 2 F are sets with T i2I F i 6 = ; for at least ? n k sets I f1; 2; : : :; ng of size k, then there e...

متن کامل

Tilted Sperner families

Let A be a family of subsets of an n-set such that A does not contain distinct sets A and B with |A\B| = 2|B\A|. How large canA be? Our aim in this note is to determine the maximum size of such an A. This answers a question of Kalai. We also give some related results and conjectures.

متن کامل

Saturating Sperner Families

A family F ⊆ 2[n] saturates the monotone decreasing property P if F satisfies P and one cannot add any set to F such that property P is still satisfied by the resulting family. We address the problem of finding the minimum size of a family saturating the k-Sperner property and the minimum size of a family that saturates the Sperner property and that consists only of l-sets and (l + 1)-sets.

متن کامل

VC dimension of ellipsoids

We will establish that the vc dimension of the class of d-dimensional ellipsoids is (d +3d)/2, and that maximum likelihood estimate with N -component d-dimensional Gaussian mixture models induces a geometric class having vc dimension at least N(d + 3d)/2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1997

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(96)00137-9